首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   473篇
  国内免费   509篇
测绘学   124篇
大气科学   537篇
地球物理   340篇
地质学   1177篇
海洋学   53篇
天文学   9篇
综合类   74篇
自然地理   235篇
  2024年   6篇
  2023年   21篇
  2022年   55篇
  2021年   80篇
  2020年   91篇
  2019年   76篇
  2018年   82篇
  2017年   99篇
  2016年   109篇
  2015年   113篇
  2014年   142篇
  2013年   168篇
  2012年   145篇
  2011年   145篇
  2010年   134篇
  2009年   141篇
  2008年   124篇
  2007年   121篇
  2006年   102篇
  2005年   78篇
  2004年   69篇
  2003年   54篇
  2002年   61篇
  2001年   51篇
  2000年   60篇
  1999年   46篇
  1998年   38篇
  1997年   22篇
  1996年   19篇
  1995年   24篇
  1994年   10篇
  1993年   8篇
  1992年   27篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   11篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
排序方式: 共有2549条查询结果,搜索用时 15 毫秒
1.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
2.
1 INTRODUCTION Pit connection is an important feature in Rhodophyta and significant in algal phylogeny. Various documents have illustrated the existence of pit-connection in red alga previously (Migita, 1967; Ramus 1969a, b; Bourne et al., 1970; Lee and F…  相似文献   
3.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
In 1903 the Swiss Federal Research Institute WSL started its first forest hydrology measurements with the aim to deliver a sound scientific basis for the implementation of new forest legislation introduced in Switzerland in 1876. This legislation was triggered by several large floods that occurred in Switzerland, for which a major cause was widely seen as the poor condition of forests at that time. Consequently, hydrologic research at WSL first focused on the influence of forests on floods. In the second half of the 20th century, other hydrological issues such as water quality, snow hydrology and sediment transport complemented the hydrologic research at WSL. Some recent results of this work are presented in three papers joining this introductory paper to mark the 100th anniversary of hydrologic research at WSL. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
A one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring‐early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70‐year‐old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high‐latitude stands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
8.
本文着重描述了SGR钻孔处冰盖上的积雪在密实化过程中的特征变化,并对该过程进行了分段的和全面的回归分析.结果表明,冰盖密度随深度增大,但增长幅度随深度减小.作者提出密度变化减小度的概念.计算得出的所研究冰芯钻取点的密度变化减小度为-0.15kg/m~3·m~2,粒雪成冰前的密实速率平均值为4.08kg/m~3·a.本文得到的冰盖密度变化“临界点”与以往报道的有所不同.分析这一现象时,作者强调当积雪还在活动层时冰盖温度的影响,并以此解释密度剖面的异常变化以及离差的回升.特别指出,积雪的密度变化具有气候学意义,它在一定程度上能够反映出积雪形成及变化过程中气候变化的某些信息.本文由密度变化确定的钻孔点雪冰转化深度为50米.  相似文献   
9.
王岭  王睿 《探矿工程》2008,35(11):42-47
介绍了广州地区基坑支护近年来的主要类型及其适用范围,并在分析选型各影响因素的基础上,总结出设计选型的要点。  相似文献   
10.
Abstract

Intra and inter-annual variations in the sea ice thickness are highly sensitive indicators of climatic variations undergoing in the earth’s atmosphere and oceans. This paper describes the method of estimating sea ice thickness using radar waveforms data acquired by SARAL/Altika mission during its drifting orbit phase from July 2016 onwards yielding spatially dense data coverage. Based on statistical analysis of return echoes, classification of the surface has been carried out in three different types, viz. floe, lead and mixed. Time delay correction methods were suitably selected and implemented to make corrections in altimetric range measurements and thereby freeboard. By assuming hydrostatic equilibrium, freeboard data were converted into sea ice thickness. Results show that sea ice thickness varies from 4 to 5?m near ice shelves and 1 to 2.5?m in the marginal sea ice regions. Freeboard and sea ice thickness estimates were also validated using NASA’s Operation Ice Bridge (OIB) datasets. Freeboard measurements show very high correlation (0.97) having RMSE of 0.13. Overestimation of approximately 1–2?m observed in the sea ice thickness, which could be attributed to distance between AltiKa footprint and OIB locations. Moreover, sensitivity analysis shows that snow depth and snow density over sea ice play crucial role in the estimation of sea ice thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号